SYLLABUS

DIVISION: Business and Engineering Technology

REVISED: Fall 2013

CURRICULA IN WHICH COURSE IS TAUGHT: Precision Machining Technology

COURSE NUMBER AND TITLE: MAC 122 – Numerical Control II

CREDIT HOURS: 2 HOURS/WK LEC: 1 HOURS/WK LAB: 2 LEC/LAB COMB: 3

I. CATALOG DESCRIPTION:

- Focuses on numerical control techniques in metal forming and machine processes.
- Includes theory and practice in milling machine computer numerical control program writing, setup, and operation.

II. RELATIONSHIP OF THE COURSE TO CURRICULA OBJECTIVES:

• This course is intended to develop a basic knowledge of milling numerical control systems, operations, and capabilities.

III. REQUIRED BACKGROUND/PREREQUISITES:

• MAC 121, 127

IV. COURSE CONTENT:

- 1. CNC Milling Machine
 - a. Safety
 - b. Coordinate System
 - c. Absolute and Incremental Distances
 - d. HAAS Controller
 - e. Machine Operation
 - f. Work-piece Set-ups
 - g. Tooling
 - h. Tool Length and Work Offsets
- 2. CNC Mill Programming
 - a. G and M codes
 - b. Linear Interpolation
 - c. Circular Interpolation
 - d. Cutter Compensation
 - e. Circular Pocket Milling
 - f. Canned Cycles
 - i. Drill Routines
 - ii. Tapping Routines
 - iii. Bolt Hole Patterns
 - iv. Bore Cycles
 - g. Loops and Sub-programs
 - h. General Purpose Pocket Milling
 - i. Thread Milling/Helical Milling

- j. Text Engraving
- k. Scaling
- I. Rotation
- m. Mirror Image

V. THE FOLLOWING GENERAL EDUCATION OBJECTIVES WILL BE ADDRESSED IN THIS COURSE (Place X by all that apply)

Х	Communications	Personal Development
		_

<u>X</u>Critical Thinking

Cultural & Social Understanding

<u>X</u> Information Literacy

VI. LEARNER OUTCOMES

VII. EVALUATION

X Quantitative Reasoning

_____Scientific Reasoning

The function method			
 Shall understand the Cartesian coordinate system using absolute and incremental locations. 	Lab exercises In class assignments Written tests		
 Learner outcome Demonstrate ability to safely setup and operate the CNC milling machine 	Evaluation method Lab exercises		
Learner outcome	Evaluation method		
 Shall interpret and write CNC programs using "G" and "M" codes. 	Lab exercises In class assignments Written tests		
Learner outcome	Evaluation method		
 Demonstrate the knowledge to properly set Tool Length offsets and work offsets on the CNC milling machine. 	Lab exercises		
Learner outcome	Evaluation method		
• Demonstrate the knowledge to utilize cutter compensation, circular interpolation, canned cycles, drill routines, loops and sub-programs.	Lab exercises In class assignments Written tests		
 Demonstrate the knowledge to program G and M code using sub-programs and "do" loops, mirror imaging, scaling, coordinate rotation, engraving, and helical milling. 	Evaluation method Lab exercises In class assignments Written tests		

VIII. Over 90% of students will successfully complete this class.